Continental Drift and Seafloor Spreading

Part 1: A Controversial Theory

- In a 1912 lecture, German born meteorologist ______ proposed the idea of ______.
- His idea came from 2 observations
 - The ______ seem to fit together like a ______
 - _____ of animals found on coasts of different ______ also
- The original land mass he referred to as '_____,' meaning '_____,'

Ideas that supported Wegener

- Puzzle pieces: the way the ______ together
- Fossil records: Locations of _____ on ____ that would have fit together
- Geologic records: nearly identical _____ on continents
 that would have fit together
- Climate change: Plants that live primarily in ______ regions found on multiple continents, including ______. If Pangea were true, the continent would have been in a ______ allowing for that plant to survive.

Wegener gets denied

 Alfred Wegener had a ______ in his theory... He could not explain _____, ____, or _____ this occurred.

•	Wegener proposed that the		of the Earth somehow caused
	the	to move, and they had	'' through the
	oceans.		

- This idea was quickly shot down by _____ and _____.
 - The Earth spinning cannot cause less dense continental crust to plow through more dense and rigid oceanic crust.
- Wegener's idea was _____ by the _____
 and would not be revisited until _____ his _____.

Part II: Seafloor Spreading

- During the 1940s and 1950s, there were huge ______ in technology, specifically in the use of ______ waves.
- Scientists began bouncing ______ off the

_____ in an effort to make a map of the

_____ floor.

• This led to a major discovery! In the middle of the Atlantic, Pacific, and other oceans around the world was a chain of _____

and ______.

- These are now referred to as '______.'
 We often refer to the one present in the Atlantic as the mid-Atlantic ridge.
- Where did these ridges come from?

Harry Hess

- In the early 1960s, Harry _____, a Princeton University Professor, proposed his now famous theory.
- Harry's theory is called "______."
- Hess proposed that _____ dense, _____ magma, from beneath the Earth's crust was pushed _____ through the _____ ocean floor.
- The seafloor then was forced ______ from the _____,
 _____ the seafloor apart.

Evidence for Spreading

- In 1968, the Glomar Challenger began collecting ______ from the ______ Hess's theory.
- Scientists collected ______ from the ocean floor, and also drilled samples from different distances between the ridge and the coastline.
- Scientists found that the ______ rocks are found along the ______, and became increasingly ______ as you move ______ toward the coastline.
- These findings ______ both _____ theory of seafloor spreading, and ______ theory of continental drift.

More Supporting Evidence: Magnetic Time Scale

- When rocks containing _____ cool, the iron aligns itself with the Earth's _____, much like a _____ does.
- Scientists have determined that the Earth's magnetic poles have
 _____ multiple times.
- Looking at the sea floor iron-containing rocks, they '_____' their polarity as you move ______ from the mid-ocean ridge.
- In other words, the sea floor spreading theory fits _____ with another theory scientists have had for some time.